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Abstract 

The sine- and sinh-Gordon equations are the harmonic map equations for maps of the (Lorentz) 
plane into the 2-sphere. Geometrically they correspond to the integrability equations for surfaces 
of constant Gauss and constant mean curvature. There is a well-known dressing action of a loop 
group on the space of harmonic maps. By discretizing the vacuum solutions we obtain via the 
dressing action completely integrable discretizations (in both variables) of the sine- and sinh- 
Gordon equations. For the sine-Gordon equation we get Hirota’s discretization. Since we work in a 
geometric context we also obtain discrete models for harmonic maps into the 2-sphere and discrete 
models of constant Gauss and mean curvature surfaces. 
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1. Introduction 

In recent years mathematical physicists have been studying discrete (in space and time) 
analogs of integrable non-linear field models motivated by questions arising in statistical 
mechanics (spin models) and quantum field theory [lo]. Perhaps it is necessary to explain 
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what we mean by integrable. We call a non-linear field equation integrable if it arises as 
the flatness (zero-curvature) condition of a connection with values in a loop Lie algebra. 
A standard example for this is the non-linear a-model, i.e., the harmonic map equation for 
maps of a surface into a symmetric space [ 14,19,18,7]. 

Many problems in classical surface geometry (minimal surfaces, constant curvature suf- 
faces, Willmore surfaces) give rise to well-known field equations: the Liouville equation, 
sine- and sinh-Gordon equations and more generally the Toda field equations [6,4], all of 
which are harmonic map equations. The essential requirement for a discrete version of such 
equations is that the discretization is also integrable. By this we clearly mean that the dis- 
cretized equation is the zero-curvature equation of a loop Lie group valued connection over 
discretized space-time (the lattice Z* in the simplest case) where the dependence on the loop 
parameter (“spectraI parameter”) should be the same as in the smooth case. Whether, given 
a certain integrable field equation, such a discretization exists and whether it is unique is by 
no means clear. Thus, rather than deriving integrable discrete analogs from first principles, 
they are found by ad hoc considerations. 

In this note we focus on the sine- and sinh-Gordon equations which arise as the inte- 
grability conditions for constant negative Gauss curvature (K-surfaces) and constant mean 
curvature (CMC) surfaces. The unit normal map of either surface is a harmonic map into the 
2-sphere S* and thus gives rise to an extended frame (cf. Section 2) into an appropriate loop 
group of SU(2). This exhibits the sine- and sinh-Gordon equations naturally as integrable 
equations in the above mentioned sense. The past few years have seen substantial progress 
in understanding such equations from a differential geometric viewpoint: the methods sug- 
gested by mathematical physicists to construct solutions, the R-matrix and A-K-S scheme, 
loop group factorizations and dressing action, have successfully been applied to classify and 
parametrize a large class of surfaces [6]. In many cases the dressing orbit though a trivial or 
vacuum solution accounts for all solutions one is interested in (e.g. doubly periodic solu- 
tions) [9,5]. It is precisely this construction which we will use to find discrete versions of the 
sine- and sir&Gordon equations. Since the vacuum solution, a 2-parameter subgroup, can 
be easily discretized (cf. Sections 3 and 4) we obtain via dressing discrete extended frames, 
i.e., maps from the lattice Z* into a suitable loop group of SU(2), for discrete analogs of K- 
and CMC-surfaces. The compatibility equations for the existence of such a map, i.e., the 
products of the values of the extended frame evaluated along any given quadrilateral equals 
the identity, give integrable discretized versions of the sine- and sinh-Gordon equations. 
Geometrically, the extended frame describes the unit normal map of the constant curvature 
surface so that we obtain natural definitions of discrete harmonic maps from the lattice Z* 
into the 2-sphere for both, Lorentzian and Euclidean discrete space-time. This is carried out 
in some detail for K-surfaces (cf. Section 3) and we make contact to the work of Bobenk+ 
Pinkall [2]. The case of CMC-surfaces is more involved and the reader is referred to [2] 
for an exhaustive treatment, including explicit parametrizations of solutions in terms of 
theta functions. The investigation of discrete analogs of minimal surfaces in lR3 (Liouville 
equation), Willmore surfaces (Toda field equations for SO(5)) and more generally harmonic 
surfaces in a compact symmetric space will be forthcoming. 
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Finally, from a practical point of view the existence of exact discrete analogs of certain 
surface classes also is advantageous when performing computer experiments: to run an 
algorithm based on an exact discrete theory avoids most of the problems arising when 
smooth theories are put into algorithms. 

2. Loop group factorization and dressing action 

In this section we recall the basic ideas, how to apply loop group factorizations and the 
corresponding dressing actions to obtain solutions to soliton equations. In particular, this 
approach applies to the sine-Gordon equation and sinh-Gordon equation which describe 
constant negative Gauss curvature surfaces (K-surfaces) and constant mean curvature sur- 
faces (CMC-surfaces). Using these methods we will derive integrable discrete versions of 
the sine- and sinh-Gordon equations, which will give rise to discrete K-surfaces and discrete 
CMC-surfaces. 

Let f : D c lR* + lR3 be a K-surface or CMC-surface, where D is a simply connected 
region containing the origin. Then its Gauss map N : D -+ S* is harmonic if D is given the 
appropriate metric: for CMC-surfaces this is the induced metric of f, and for K-surfaces it 
is the metric given by the second fundamental form of f (which is a Lorentz metric since 
K < 0, see [13]). 

ForaK =-lsurfacef: D+ R3,1eto: D + (0, n) be the angle between the 
asymptotic curves on the surface. Then there exists a unique frame 

F : D + SU(2) 

of the Gauss map N : D + S* (i.e., N = II o F, where rr : SU(2) -+ S* = SU(2)/S’ is 
the natural projection) satisfying 

,F=F.;(-T@ a,lw)=F.(a,n+B), 

-io 
-: = Fe e-“(-B)e”, 

F(0) = I, 

(2.1) 

where x, y are coordinates on the surface consisting of arc-length parameters of the asymp- 
totic curves, 

The integrability condition 

a,(a,a + B) +a,+~ -“Be”) = [a,52 + B, -e-“Ben] (2.2) 

for the existence of F (i.e., the Gauss equation for the surface) is the sine-Gordon equation 

axayo = sino. (2.3) 
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It is easy to check that (2.2) is invariant if we insert a spectral parameter Ic E lR* into (2.1) 
in the following way: 

a,@ = Q. (a,n + BA), 

a,@ = @ . e-“(-B)e”)c-l, 
@(O, -) = I. 

(2.4) 

Thus, @ : D x R* + SU(2) is a family of frames F,J = @(-, A) : D + SU(2) for the 
harmonic maps NA = rr o FA : D + S*. In the sequel we shall call such @ an extended 
frame (of N). The corresponding family of K-surfaces is given by Sym’s formula [ 16,131 

f~ = @-’ : D --f su(2) = R3. (2.5) 

Constructing solutions to the sine-Gordon equation is equivalent to finding extended frames 
@ solving (2.4) for some 

&1 o O 
‘( > 2 0 --w 

with o : D + [0, n). 

Notice that the sine-Gordon equation has the vacuum solution o E 0 with corresponding 
extended frame 

4JB = exp ((xi - yA-‘)B) . (2.6) 

To obtain other solutions we apply the dressing action, for which we introduce the following 
loop spaces: 

LSU(2) = 
1 

g : Iw* -+ SU(2) ; g(-A) = (; :$(A) (: 01)) 

is an infinite-dimensional Lie group with Lie algebra 

Ls.(2)=((:R*+su(2);~(-A)=Ad(:, _9>,@)). 
The symmetry condition in the definition of LSU(2) is equivalent to the following: if g(A) = 
CkEZ gkAk E LSU(2) is the Fourier series expansion then even coefficients are diagonal 
whereas odd coefficients are off-diagonal. ZSU(2) has two Lie subalgebras 

L+su(2) = 
I 

6 E Lsu(2); t(h) = x(kkk , 
k?O I 

c E Lsu(2); f(A) = c&kk , 

kt0 I 

whose direct sum is Lsu(2). The corresponding Lie subgroups of Lsu(2) are 
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L+su(2) = g E LSU(2); g(X) = C&P , 

i k?O 1 

L-!3u(2) = g E Lsu(2); g(i) = 1 + &kk . 
I k<O 1 

The following result is proven in [8]. 

Theorem 2.1. Multiplication L-SU(2) x L+SU(2) + LSU(2) is a diffeomorphism onto 
the open and dense Lie subset L-SU(2) + LfSU(2) c LSU(2). 

With this at hand, let 

G = LSU(2) x LSU(2), 

Gt = diag G, 

G2 = L-SU(2) x L+SU(2) 

with Lie algebras Q, Qt and &, respectively. Theorem 2.1 implies [ 171 that multiplication 

Gt x Gz+ G (2.7) 

is a diffeomorphism onto the open and dense Lie subset Gt f G2. For g E Gt . G2 we 
denote its component in Gi by goi. On the Lie algebra level this decomposition is explicitly 
given by 

6 = Gl @ G2, cc. rl) = (4+ + v-3 e+ + rl-) + v- - v-9 D+ - ,!+I, 

where .$ = .& + t+ E L-su(2) CB L+su(2). Now let 0 : D x OX* + SU(2) be an extended 
frame. Due to the specific form of the coefficient matrices in (2.4) we can view @ : D + 
ZSU(2). Proofs of the following lemma in similar contexts can be found in [ 11,5,9]. 

Lemma 2.1. Let h = (h_, h+) E G2 and @ : D + LSU(2) be an extendedframe. Then 
rcI : 5 + LSU(2) defined by 

W’, 9) = (h-Q, h+@)G, 

is also an extended frame on some D c D. Moreover, 

h#@ := W 

defines an action, the so-called dressing action, on extended frames. 

Applying this construction to the vacuum solution aB given by (2.6) yields the dressing 
orbit 

through QB, which provides an infinite-dimensional space of (local) solutions to the sine- 
Gordon equation (2.3). 
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We now turn to the case of CMC-surfaces. The extended frame @ of a harmonic Gauss 
map N : R2 + S2 satisfies 

a+&’ ( iayo e-O)\. + ew)c-’ 
2 -eOi _ eeoh-’ > -i$0 ' 

a,@=@,' 
X 

-a,0 e-q-ewA-l 
2 -eWk + emoh-’ > a,@ ’ (2.8) 

@(O, -) = I, 

where X, y are the principal curvature coordinates on the CMC-surface (we allow no umbilic 
points), e-h is the conformal factor of the induced metric ds2 = em2”(dX2 + dy2) and the 
spectral parameter h E S’ c C [9,3,4]. The integrability condition for the system (2.8) is 
the (elliptic) sinh-Gordon equation 

E$+a$+2sinh20=0. (2.9) 

As before, FA. = @(-, A) : R2 --f SU(2) is a family of frames of the harmonic maps 
Nk = n o FL : R2 + S2. Sym’s formula [3,13] retrieves (a family of) two CMC-surfaces 
(parallel to each other) of mean curvature H = 4 via 

f? = + su(2) = R3. 

The following loop spaces will be relevant for the dressing procedure: the loop group 

ASL(2, a=) = 
1 

g : s’ + SL(2, C); g(-k) = 
(:, I)l)p($ “I>) 

with Lie algebra 

Asl(2, C) = .$ : S’ + sl(2, C); c(-h) = Ad 

ASL(2, C) has two Lie subgroups 

ASU(2) = (g E ASL(2, C); g(k) E SU(2)forI E S’], 

A,$L(2, C) = (g E ASL(2, C); g extends holomorphically to ]A] < 1 

and g(0) E Al, 

where 

A= I(; &):PER+] cs~(2,C) 

is the imaginary torus. The following global factorization result is proven in [ 151. 

Theorem 2.2. The multiplication map 

ASU(2) x Af;SL(2, C) + ASL(2, C) 
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is a diffeomorphism. In particular, every g E ASL(2, C) has a unique decomposition 
g = gug+ where g, E ASU(2) and g+ E AzSL(2, C). 

Notice that an extended frame can be viewed as a map @ : lR2 -+ ASU(2). Now 
Theorem 2.2 gives rise to the dressing action of AiSL(2, C) on extended frames [ 11,5]: 
for every h E Af;SL(2, C), 

h#@ := (h@)u 

is also an extended frame. As before, (2.8) has the vacuum solution 

QB = exp (xB(h + A-‘) + iyB0, - AK’)) 

corresponding to o 3 0, and the dressing orbit 

A$L(2, @)#@ 

(2.10) 

(2.11) 

through @’ yields an infinite-dimensional space of solutions to the sinh-Gordon equation. 
In fact, all finite-type solutions, in particular, all doubly periodic solutions, are contained in 
this orbit [9,5]. 

3. Discrete sine-Gordon equation and discrete K-surfaces 

In this section, we use the dressing action (cf. Lemma 2.1) to derive an integrable discrete 
version of the sine-Gordon equation. Using the Sym formula (2.5) we then give the discrete 
analog of a K-surface, which coincides with the geometric definition given in [2]. 

We start deriving a discrete analogue of an extended frame @J : R2 + LSU(2) using the 
dressing action in Lemma 2.1. For this it suffices to discretize the vacuum solution 

oB = exp((xh - yi-‘)B) . 

A natural discretization can be obtained by solving the following system over Z2 with 
meshsize S > 0: 

= @n,m . &(I + SBA), 

= @n,m . $1 - 6K’), 

1, 

where Ah = ,/det(l f SEA*‘) = ,/w. This system is motivated by the naive 

discretization of d@ = Q, . (B)i dx - B)i-’ dy) scaled by the factors AI’ to ensure that the 
solution 

@&I = -$-&I + BB)Ly(I - GB~-‘y (3.1) 
+ - 
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takes values in SU(2) for A E R*. Moreover, 

@&J-Q = (A _9) @J&&) (:, “I> 
so that we have a map 

@a : z2 + LSU(2). 

Now let h = (h-, II+) E G2 and consider 

@J := h#@ : z2 + LSU(2), 

where, as in the smooth case (cf. Lemma 2.1) (Iz#@)~,~ = ((h, h)(@,&, @,&))o,. 

Then, /I(@~, QB) = (@, @)g, with g = (gg, g+) : Z2 + G2, in particular, 

g+(o) : z2 + s’ c SU(2). 

Thus, there exists a unique function u : Z2 + [0, n) such that 

( eW2)u 
g+(o) = o 

0 

> 
e-(i/2)u * 

Strictly speaking @ and g may not be defined on all of Z2 since the loop group factorization 
(2.7) is only defined on the open and dense subset G 1. G2. However, it will be a consequence 
of the next theorem that @ and g are defined on Z2. 

Thewem 3.1. @ : Z2 + LSU(2) satisfies the equations 

@ n+l,m = @Il,m~tl,m, 

CD n,m+l = @n.m@n,m, 

Qo.0 = 1, 

where 

(3.2) 

The compatibility equation 

@n,mQ”,m+l = Q?l,m@n+l,m 

unravels lo 

4 

s2 sin d (Un+l,m+l - Un+l,m - Un,m+l + Un,m) 

= sin $ (Un+b+l + Un+h + Un,m+l + Un,m L 

which is a discrete version of the sine-Gordon equ&n. 

(3.3) 

(3.4) 

(3.5) 

(3.6) 
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Remark 3.1. 
(0 

(ii) 

The system (3.2) is an exact discrete analogue of the continuous Eqs. (2.4) for an 
extended frame in the sense that it has similar i-dependence. 
Eq. (3.6) is known as the Hirota equation [12]. It recursively defines for each set of 
prescribed Cauchy data a unique solution u : Z* -+ [0, n) and hence, using (3.3) and 
(3.9, a unique solution @ : Z* -+ ZSU(2) by (3.2). This shows that @ is indeed 
defined on Z* . 

Proqf: Since 

(@, @) = (h-, hf)(@, @)(g-, g+j-’ 

we obtain two expressions for fln,m: 

n n.m = @,$%l+l,m =g,,(~~,)-1(h)-1h-~,8+,,,(gn+l,m)-1 

= n,m g- $1 + W(g,,,,)-’ 

=g + 
n.m -&+(l + SSNgn++,,J’. 

After cancelling l/A+, the latter expression takes values in LfSU(2), while the former 
expression has a simple pole at ), = oc and thus 

A+G’,,, = @)?n + Q$. 

Since 

g-(00) = 1 and g+(O) = 
eW*)u 0 o 

e-W2)u 
> 

we conclude 

and 

ficu, = 
e-(V*)(u,+l,,-u,,,) 0 

n.m 0 e(i/2)(u.+i,,-u~.~) > 

A similar calculation gives the expression for On,,. That the compatibility Eq. (3.5) is 
equivalent to the discrete sine-Gordon equation follows by direct computation. 0 

To give Theorem 3.1 geometric content, we define the discrete analogue of a K-surface 
using the Sym formula (2.5) and derive the basic properties of such a surface. It turns out 
that these surfaces are precisely the ones introduced and studied in [2]. Let 

@ : z* + LSU(2) 
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be a discrete extended frame, i.e., 0 satisfies (3.2) for some u : Z2 + [0, n), and define 

f : it2 + R3 = su(2), 
(3.7) 

We will call f : Z2 + lR3 the discrete K-su$ace corresponding to the solution u : Z2 + 
[O, n) of the discrete sine-Gordon equation (3.6). Then 

0 1 . Tie -W)(u,+l,,-~~,~) 

-(VNu,+l.,-u,,,) 0 (3.8) 

f*,m+l - fn,m 
4s 

= Ad @,,,,- 
( 

0 ~ie(i/2)(u”,~+l+un,m) 

4+a2 Zie 1 * -WNu,,,+l +u.,,) 0 
(3.9) 

where we have evaluated %,,,, at A = 1. The following geometric properties [2] can now 
be easily derived using the above formulas. 

Theorem 3.2. Let f : Z2 + lR3 be a discrete K-St&ace. 
(i) The edges have constant length, i.e., 

Ilf n+l,m - fn.m II = Ilfn,m+l - fn.m II = 46/(4 + J2). 

(ii) The angles between the edges eminating from a common vertex are given by 

L(fn+l,m - fn,m, fn,m+l - fn,m) = &h+l,m + h,m+l), 

L(fn,m+l - fn,m, fn-1.m - fn,m) = ?r - &h,m+1 + un-l,m), 

L(fn-l,m - f”,rn, fn.m-1 - fn,m) = &h-1,m + h,m-l), 

L(fn,m-1 - fn,m, fn+l,m - fn,m) = Jr - @h,m-1 + un,m). 

In particular, their sum is 2n and thus the four edges eminating from a common vertex 
are coplanar 

(iii) Let P(p, q, r) denote the plane spanned by the vertices p, q, r and denote by 

a = LWfn,m, fn+l,m9 fn,m-l), P(f,+1,,-1, fn+l,m, f&-l)), 

z = L(P(fn+l,m fn,m, fn+l,m-lh P(f,,m-I, fn,m, fn+l,m-l)), 

then 

1 1 4 - 62 
sin -a! sin -Z = - 

2 2 4+s2’ 

which is an equivalentformulation of the discrete sine-Gordon equation (3.6). 

From (ii) of Theorem 3.2 we see that the discrete analogue of the angle w between the 
asymptotic curves on a K-surface, i.e., the angle w,,~ between the edges fn+l,m - fn,m 

and fn,m+l - fn,m. is given by 
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wz,m = :(Un+l,m + b,m+l). (3.10) 

Notice that the angle w,,,, uniquely determines the remaining angles in the quadrilateral 
with vertices .krn, &+I,~, fn.m+~Y _Li~,~+t: from Theorem 3.2(ii) we see that the angle 
at the vertex fn+l,m+t is also un,m an d the angles at the vertices fn+l,m, fn,m+l are equal, 
say Gn.,. But from the discrete sine-Gordon equation (3.6) we obtain 

?n,m = 
4n.m -k 

1 - kqn,m ’ 

where q = e”“, q = eiz , k = S2/4. Moreover, the four angles w~,~, i3n_t,m, w~_~,~_I, 
Zi, ,m _ 1 around the vertex f n,m add up to 2n (cf. Theorem 2.3(ii)) so that we obtain the 
following geometric version of the discrete sine-Gordon equation [ 12,2,1]: 

qn,m4n-l,m-1 = 
1 - kqn-1.m 1 - kqn,m-1 

9n-1,m -k . qn,m_l -k . 

The Gauss map of a K-surface f : D + lR3 with extended frame @ : D + ZSU(2) is 
given by [ 13,3] 

N=AdQ(l)(i~ _pi2):D+S2csu(2)=W3. 

Thus, it is natural to define the discrete Gauss map N : Z2 + S* by 

N n.m := Ad@n,m(l) (if _pi2). 

From (3.8), (3.9) one sees that N,,m is perpendicular to the plane spanned by the vertex 
. . star emmatmg from fn,m (cf. Theorem 3.2(ii)). The harmonic map condition for N, namely 

d(*dN x N) = 0 

holds in the following precise sense for the discrete map Nn,m: the discrete l-form 

NP + % NP - 4 

2 x 2 

where e =&$ is an edge, is co-closed. For further discussions of these issues we refer the 
reader to [ 21. 

4. Discrete sinh-Gordon equation and discrete CMC-surfaces 

Applying the same procedure as in the previous section we will derive an integrable dis- 
crete analog of the sinh-Gordon equation, which will give rise to discrete CMC- 
surfaces. 
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We begin by deriving a discrete analog of an extended frame @ : lR* + ASU(2) using 
the dressing action (2.10). Again it suffices to discretize the vacuum solution (2.11) 

@‘(x, y, A) = exp(xB(h + A-‘) + iyB@ - h-l)), 

where 

As before, we obtain 

L(Z + 6B(A. + ki-‘))“(I f iSB(A - A-‘))” E SU(2), (4.1) 

where 

A+ = Jdet(Z + SB(A + A.-‘)) = ,/m = s, 

A- = ddet(Z + iSB(i - A-‘)) = ,/w = JGGGZ, 

for A = eicy . In addition we have 

and hence (4.1) gives the discrete vacuum solution 

CDB : 2* --f ASU(2). 

Now let h E AzSL(2, C) and consider 

@ = h#@ : z* 3 ASU(2), 

where, as in the smooth case (2. lo), 

(h#@%*, = (h@&)u. 

Then h@’ = @g with g : Z* + A$L(2, C). In particular we have 

g(0) : Z!* --f A, 

where 

A= I(; ,“I); PER+] cSL(2,C) 

is the imaginary torus. Thus, there exists a unique map 

C0:2*+Iw 

such that 

( e%n/* 0 

g(O) = o e -o”.m/* . 
> 
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Theorem 4.1. The extendedframe @ : Z2 + ASU(2) satisfies the following equations: 

@ n+l.m = @n,mal,m7 

@n,m+l = @“,rn@“.rn, (4.2) 

@o.o = 1, 

where 

n 0 
_e-k”“+l,m+%“)/2 

+; ( _&%+I :+o. ,),2 

e-(~“+l,ln+%m)/2 

0 )) 
Jb 9 . 

en,,=-& (. 2 ( 0 
2 -e-(~“*“+l+9Lm)/2 

e(,vm+,,.,,I> *-l + (Bngm &) 

i6 

( 

0 -e -(~“.m+l+w”.,)/2 
-- 

2 e(%m+l+%,w 0 
)) A 

~G,PI~~ = 1 - a2 sinh2 :(w,+~,,, + wn,m), 

&ml2 = 1 - a2 sinh2 ;(o~,~+, + w”,m). 

The compatibility condition 

Q n+l,m @rl,m = @n+l,mS2n.m 

unravels to 

ffn,m 
Qn,m+l = - cash Wz+l,m+l - Wz,m 

A 2 

B +i: y sinh Wn+l,m+l - wn+l,m + %,m+l - W8.m 

2 

%,m 
iSn+l,m = - sinh %+l,m+l + W+l,m - Wt.m+l - @n.m 

A 2 

+B y cash Wt+l,m+l - Wz,m 

2 ’ 

where 

A = cash Wz+l.m - %,m+l 

2 ’ 

and 

(4.3) 
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1 
i(o!n,m+tSn.m - %mPn+~,m) = - sinh 

“n+l,m+l + 2wn+1,m + on,m 

2 2 

+i sinh Ql+1,m+t + 2%,nl+1 + %,m 
2 , 

which is a discretized version of the elliptic sinh-Gordon equation. 

Proo$ By construction we have 

h@ = @g 

for h E AiSL(2, C) and g : Z2 + AiSL(2, C). Thus, using (4.1), we obtain 

n n,m =@n~~@n+l,m = &,m(@~m 
)-l&3 -1 

n+l.mgn+l,m 

= &,m 
1+ 6B0, + a-‘) _* 

A+ 
gn+l,m’ 

For g E ASU(2, C) let 

g(k) := (g(l/I):)*)_’ 

be the conjugation with regard to the real form ASU(2). Note that g E Af;SL(2, C) 
if and only if g E AiSL(2, C) = [g E ASL(2, C) I g extends holomorphically to 
Ihl > 1, g(oo> E A]. Then 

En.rn = Qn,m = S,,m 
l+ GB(A+A-l)g_, 

A+ 
n+l.m 

so that we have 

gn,m(l + SBOc + ~-‘))g~+!1,, = g,,,(l + 6B(A + A-‘))~~~,,,. 

The left-hand side has a simple pole at h = 0 with residue 

52(-l) = g,,,(O)aBg-’ n.m n+l,m(O) 

0 e(~n+l.n+%,w 
_e-(~“+l,m+w”.m)/2 

> 0 ’ 

whereas the right-hand side has a simple pole at h = 00 with residue 

= j \_e(%+L,+~“,,)/2 

Hence 

52 

0 . ) 

+ 52(l) n.m a 
> 
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with 

for some a! : Z2 + @. From det Q,,, = 1 we obtain 

lowly = 1 - 62 sinh2 i(~~+r,~ + w,,,~). 

Similarly, one shows the corresponding statements for O,,, . The compatibility equations 
follow by equating coefficients at powers of )i in (4.3). 0 

One can now proceed as in Section 3 and describe the discrete analogues of CMC surfaces 
obtained from the above formulas. This would go beyond the intention of the present note. 
We refer the interested reader to [2] where a detailed discussion of this aspect can be found. 
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